Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces
نویسندگان
چکیده
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
منابع مشابه
High-Order Entropy Stable Formulations for Computational Fluid Dynamics
A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations...
متن کاملEntropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations
Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier–Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coup...
متن کاملDiscontinuous Galerkin method for Navier-Stokes equations using kinetic flux vector splitting
Kinetic schemes for compressible flow of gases are constructed by exploiting the connection between Boltzmann equation and the Navier-Stokes equations. This connection allows us to construct a flux splitting for the NavierStokes equations based on the direction of molecular motion from which a numerical flux can be obtained. The naive use of such a numerical flux function in a discontinuous Gal...
متن کاملLong Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations
We prove that a popular classical implicit-explicit scheme for the 2D incompressible Navier–Stokes equations that treats the viscous term implicitly while the nonlinear advection term explicitly is long time stable provided that the time step is sufficiently small in the case with periodic boundary conditions. The long time stability in the L2 and H1 norms further leads to the convergence of th...
متن کاملEnergy Stable Flux Reconstruction Schemes for Advection-Diffusion Problems on Tetrahedra
Theflux reconstruction (FR)methodology provides a unifying description ofmany high-order schemes, including a particular discontinuous Galerkin (DG) scheme and several spectral difference (SD) schemes. In addition, the FR methodology has been used to generate new classes of high-order schemes, including the recently discovered ‘energy stable’ FR schemes. These schemes, which are often referred ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 36 شماره
صفحات -
تاریخ انتشار 2014